
Towards Predictor Models for large Libre Software Projects

Israel Herraiz, Gregorio Robles, Jesus M. Gonzalez-Barahona
{herraiz, grex, jgb}@gsyc.escet.urjc.es

Grupo de Sistemas y Comunicaciones
Universidad Rey Juan Carlos

Madrid, Spain

ABSTRACT
Libre (free/open source) software provides an ample range
of publicly available data sources about its development,
which can be retrieved and analyzed. Consequently, it of-
fers a good opportunity to build predictive estimation and
evolution models. The main challenge to understand li-
bre software development is that its development nature is
radically different from ’classical’ in-house software develop-
ment, common in industry in the last decades. Developers
and other human resources are generally a mixture of a few
hired developers and many volunteers whose contribution
(in number of hours per week and in total time devoted to
the project) is not foreseeable in advance. This paper is a
first step in finding predictive models in the libre software
world. We have studied three data repositories (versioning
system, mailing lists and bug tracking system) of GNOME,
a large libre software project with several thousand contrib-
utors and several millions of lines of code, measuring activity
and participation in it during the last years. Results and cor-
relations for these sources allow us to adventure some first
estimations of how participation and activity will evolve in
the future.

Categories and Subject Descriptors
K.6.3 [Software Management]: [software development,
software maintenance]

General Terms
Management, Measurement

Keywords
libre software, predictor models, open source, data mining,
software evolution

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PROMISE’05, May 15, 2005, St. Louis, Missouri, USA.
Copyright 2005 ACM 1-59593-125-2/05/0005 ...$5.00.

1. INTRODUCTION
It has already been stated [8], that the development pro-

cess in successful libre software1 projects is radically differ-
ent from the ’classical’ in-house development strategies that
had been used for decades. Besides using extensively dis-
tributed development environments, self-selected volunteers
perform crucial tasks such as support, bug reporting, minor
software enhancements and even form a part of the devel-
oping core group, which is responsible for a high amount of
the total source code produced.

But although the importance of libre software has been
raising during the last years (for instance, much of the In-
ternet infrastructure relies on libre code), there is a lack of
predictor models for these type of developments. This paper
is a first step in finding predictive models in the libre soft-
ware world. We have studied three data sources (versioning
system, mailing lists and bug tracking system) from a large
libre software project and measured activity and participa-
tion during the last years. Results and correlations for these
sources allow us to make first estimations of how participa-
tion and activity will be in future.

The structure of this paper is as follows: the next sec-
tion will illustrate related work on prediction models and
other evolutionary studies on libre software. Then, we will
present the research goals of this study, following with the
-empirically based- methodology that we have used. Results
and observations have been placed in the next section, in-
cluding a discussion about some issues that may be learned
from that results. Finally, some conclusions and further lines
of work can be found.

2. RELATED WORK
Libre software projects offer governance structures and

participation procedures that differ drastically from what
has been observed in industry during the last decades. Ger-
man [2] provides a detailed description of how is organized
GNOME, the large libre software project that we will also
target in this study. The goal of that study was to identify
how the most important problems of global software devel-
opment (distance, time differences and cultural differences)
are solved in the libre software world. Besides these charac-
teristics, libre software development has a strong volunteer

1Through this paper we will use the term “libre software”
to refer to any code that conforms either to the definition of
“free software” (according to the Free Software Foundation)
or “open source software” (according to the Open Source
Initiative).

nature which makes it difficult to manage and also to pre-
dict [7].

Since the source code and many of the subproducts of
the development process, such as mailing list archives, bug
report systems or versioning repositories are publicly avail-
able [11], there have been many empirically based studies
on libre software ([8], [4]).

Other studies that may help advancing the research
agenda towards predictor models in the libre software world
are related to software evolution, specially if they can be
linked to the ones that study the human resources as the
ones presented in the previous paragraph. In this sense,
Godfrey et al. [3] found that the Linux kernel had a super-
linear growth, apparently breaking one of Lehman’s laws on
software evolution [6].

But the most important work regarding predictor models
in the libre software world is the one authored by Koch et
al. [5]. Classical effort estimation models that derive from
Norden [9] and Putnam [10] are used to see what the de-
velopment of a large libre software system may cost. The
main assumption was that once a peak point is given in
the software development, it is possible to apply a Norden-
Rayleigh-type curve and predict the total effort (and hence
the cost) of the project. Due to the public availability of
some development data (for the case of this study mailing
list archives and commits to the versioning repository were
used) the estimation could be validated with some hints of
success, but also some weak points.

3. RESEARCH GOALS
Our goal with this work is to analyze participation pat-

terns in a large libre software project which may help in
the development of a model that predicts the evolution of
the contributions in such kind of projects. Estimating the
contributions is a first step towards the estimation of the
production of source code, as well as the amount of time
that should be scheduled for this purpose. Once the effort
and the time required is known, cost could be evaluated.

Our basic hypothesis is that the evolution of a project
cannot be characterized only by means of the size of the
source code of the project. The environment plays a very
important role. The technical sphere is as important as the
community sphere. Therefore, a model which pretends to
predict evolution, must take into account parameters from
both spheres.

In particular, we have used several parameters related
to three of the most important aspects of software devel-
opment: source code production (and modification), com-
munication, and maintenance. For source code production
we have considered commits in the CVS repository, which
is a good indicator of the coding activity. For communi-
cation, we have considered messages to mailing lists since
those lists are the most important channel for information
flow within the project. For maintenance, we have consid-
ered bug reports since again they are a good indicator of the
fixes needed, and of how they are being dealt with.

Based on these parameters, we have looked for correla-
tions and interpolations that can highlight patterns and re-
lationships among them.

4. METHODOLOGY
The data sources that have been used for this study are

publicly available on the Internet and can be retrieved in an
almost automatic manner. Specifically, the ones considered
for this study were the mailing lists archives2, the bug track-
ing system3 and the CVS versioning system4 of the GNOME
project, a several million lines of code desktop environment
developed by some thousands of developers world-wide.

The data gathered from the mailing list archives has been
parsed and dumped into a database. We have downloaded
the archives for 109 mailing lists included in the GNOME
and GIMP archives, and computed in total 464, 953 mes-
sages. The first message was sent on May 30th 1996 and the
last one on November 16th 2004.

For the analysis of the GNOME bug tracking system
we have retrieved all the bugs which are publicly avail-
able trough the Bugzilla web interface, and have obtained
123, 739 bug reports submitted by 41, 835 reporters. The
first bug dates from February 1999, while the last consid-
ered for this study was reported on November 2004.

For CVS we have used the CVSAnalY tool [12], which
makes a detailed analysis of the logs of the CVS repositories.
In the case of GNOME we have identified 1, 067 different
developers with write access to the CVS repository working
on the 767 existing modules. The CVS repository was open
in November 1997, and the last commits considered in this
study are from April 2004.

For each source we have performed a detailed study to
characterize its evolution. We will therefore handle two dif-
ferent sets of parameters in the following section, one linked
to the volume (number) of artifacts that have been gener-
ated for each source and another one which includes the
(number of) persons that have produced them:

• Regarding volume and size we have chosen the num-
ber of messages sent to mailing lists, the number of
reported bugs, and the number of commits to the ver-
sioning system (CVS), computed for each month dur-
ing the lifetime of the project.

• Regarding the persons involved, we have chosen the
number of people who have sent at least one message
for a given month (in the following, posters), the num-
ber of people who have reported at least one bug for a
given month (in the following, reporters) and number
of people who have committed at least one change to
the versioning system for a given month (in the follow-
ing, commiters).

5. RESULTS AND OBSERVATIONS
We have correlated the number of messages, the number

of bugs and the number of commits; one of the correlations is
showed in the figure 1, and the rest in the appendix (figures
6 and 7). We have also correlated the number of posters, the
number of reporters, and the number of commiters. One of
these correlations is showed in the figure 2, and the rest in
the appendix (figures 8 and 9). With all these correlations,
we can estimated any of the parameters if we know any other
of them.

Furthermore, we have found that the series in time of
these parameters are power laws. For example, in figure
4 and figure 5 we show the power laws for the number of

2http://mail.gnome.org/archives/
3http://bugzilla.gnome.org/
4http://libresoft.dat.escet.urjc.es/cvsanal/gnome2-cvs/

-500

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 2000 3000 4000 5000 6000 7000 8000 9000 10000

Figure 1: Correlation between the number of mes-
sages (x axis) and the number of bugs (y axis)

messages versus time, and for the number of poster versus
time. In the appendix we include the rest of laws of evolution
for each parameter (figures 12, 13, 14 and 15).

The calculated Pearson coefficients show correlation be-
tween all the pair of parameters. The linear correlation
among the number of messages and the number of bugs
throws a Pearson coefficient of 0.951. The correlation among
the number of bugs and the number of commits has a co-
efficient of 0.818. And finally, the correlation among the
number of messages and the number of commits has a Pear-
son coefficient of 0.971. These coefficients evidence strong
correlations among the number of messages, the number of
bugs and the number of commits.

We have obtained the same correlations for people who
participate in the mailing lists, Bugzilla and CVS. There are
also evidences of linear correlations, as the Pearson coeffi-
cients show. The correlation among the number of posters
and the number of reporters has a Pearson coefficient of
0.967. The correlation between the number of reporters and
the number of commiters has a coefficient 0.818. Finally, the
coefficient for the correlation among commiters and posters
has a value of 0.988.

As we can see, the relation among number of bugs and
number of commits is the weakest, as the relation between
number of reporters and number of commiters. In the other
side, relation among bugs or commits and messages, and
among reporters or commiters and posters, are the best,
which can indicate that the activity of reporting bugs or
making a commit generates more activity in the mailing
lists.

Other more interesting correlations are those which corre-
late the number of people with the activity due to this peo-
ple. We have correlated number of messages and number of
people who send messages, number of bugs and number of
reporters, and number of commits and number of develop-
ers who can write into the CVS. As our data evidence, these
correlations are similar to Brooks’ law [1], because they are
not linear, but quadratic. All the relations have been fitted
by a function like the following: f(x) = ax2 + bx + c, ex-
cept for the relation among the number of reporters and the
number of bugs, which has resulted to be linear.

In the case of the figure 3, which shows the relation be-
tween the number of posters and the number of messages, we

-500

 0

 500

 1000

 1500

 2000

 2500

 600 800 1000 1200 1400 1600 1800 2000

Figure 2: Correlation between the number of
posters (x axis) and the number of reporters (y axis)

have founded a quadratic relation, with a coefficient matrix

a b c

a 1.000
b −0.989 1.000
c 0.950 −0.984 1.000

The relation showed in the figure 10 (included in the ap-
pendix) resulted to be linear, with a Pearson coefficient of
0.818. At this moment, we can’t explain the reason behind
this pattern. If the number of bugs were almost equal to
the number of reporters, we can try to say that the bugs are
more distributed and diffused than commits or messages,
and so reporters use to have a little number (one, two, etc)
of bugs. But in this case, the number of total bugs is about
two times larger than the number of reporters. It is a really
strange case, because it looks that, each month, people usu-
ally report two bugs, and nobody reports a large number of
bugs. That is, there is not individuals who concentrate the
greater part of all bugs.

In the case of the figure 11 (included in the appendix),
which shows the relation between the number of commits
and the number of commiters, we have again a quadratic
relation, with a coefficient matrix

a b c

a 1.000
b −0.997 1.000
c 0.987 −0.996 1.000

The figures 3 and 11 verifies the Brooks’ law, because a
linear increase in the number of people does not lead to a
linear increment of the activity of the project (understand-
ing activity as number of messages or number of commits).
When the number of people who participate becomes larger,
the project begins to be saturated, and the growing rate de-
creases.

6. CONCLUSIONS AND FURTHER WORK
This paper presents a first step in the development of a

framework to obtain prediction models of the evolution of
large libre software projects. We have shown in a specific
case study how several metrics of participation can be stud-
ied, and how they are related to each other.

This specific study on GNOME shows strong evidence on

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 600 800 1000 1200 1400 1600 1800 2000

Figure 3: Correlation between the number of
posters (x axis) and the number of messages (y axis)

 1000

 10000

 10 100

Figure 4: Number of messages versus time (as
month index from the beginning of the project), in
log scale.

hight correlations between the number of bugs, messages
and commits, measured each month during the lifetime of
the project. We have also found similar relationships be-
tween the number of posters, reporters and commiters. Fur-
thermore, there are some hints of correlation between the
number of posters and the number of messages, the num-
ber of reporters and the number of bugs, and the number of
commiters and the number of commits. These correlations
are quadratic, so they conform with Brooks’ law that states
that communication grows in a quadratic fashion.

Moreover, we have found that the evolution of these pa-
rameters in time follows a power law. Therefore, with the
found correlations, and the laws of evolution of each param-
eter, we could predict any of the parameters if we knew the
evolution of any other in the past.

We consider that these evidences are enough to continue
exploring more case studies, in order to find a predictive
model for large libre software projects. Our ultimate goal is
to describe the evolution of the size of the project, and the
cost associated to the development, using publicly available
data.

The next step in our research agenda is to improve the
model by studying many other libre software projects, and to
extend it to consider other parameters, such as the number

 100

 1000

 10000

 10 100

Figure 5: Number of posters versus time (as month
index from the beginning of the project), in log
scale.

of lines of code.

7. ACKNOWLEDGEMENTS
This work has been funded in part by the European Com-

mission, under the CALIBRE CA, IST program, contract
number 004337, by the Universidad Rey Juan Carlos un-
der project PPR-2004-42 and by the Spanish CICyT under
project TIN2004-07296. We also thank the PROMISE re-
viewers for their comments.

8. REFERENCES
[1] F. P. Brooks, Jr. The Mythical Man-Month. Addison

Wesley, anniversary edition, 1995.

[2] D. Germn. The GNOME project: a case study of open
source, global software development. Journal of
Software Process: Improvement and Practice, pages
201–215, Aug. 2004.

[3] M. W. Godfrey and Q. Tu. Evolution in Open Source
software: A case study. In Proceedings of the
International Conference on Software Maintenance
(ICSM 2000), pages 131–142, San Jose, California,
2000.

[4] J. M. Gonzalez-Barahona and G. Robles. Unmounting
the ”code gods” assumption. In Proceedings of the
Fourth International Conference on eXtreme
Programming and Agile Processes in Software
Engineering, 2003.

[5] S. Koch and G. Schneider. Effort, cooperation and
coordination in an open source software project:
GNOME. Information Systems Journal, 12(1):27–42,
2002.

[6] M. Lehman, J. Ramil, P. Wernick, and D. Perry.
Metrics and laws of software evolution - the nineties
view. In Proceedings of the Fourth International
Software Metrics Symposium, Portland, Oregon, 1997.

[7] M. Michlmayr. Managing volunteer activity in free
software projects. In Proceedings of the USENIX 2004
Annual Technical Conference, FREENIX Track, pages
93–102, Boston, USA, 2004.

[8] A. Mockus, R. T. Fielding, and J. D. Herbsleb. Two
case studies of Open Source software development:

Apache and Mozilla. ACM Transactions on Software
Engineering and Methodology, 11(3):309–346, 2002.

[9] P. Norden. Useful tools for project management.
Operations Research in Research and Development,
1963.

[10] L. Putnam. A general empirical solution to the macro
software sizing and estimating problem. IEEE
Transactions on Software Engineering, 4: 345-361,
1978.

[11] G. Robles, J. M. Gonzalez-Barahona,
J. Centeno-Gonzalez, V. Matellan-Olivera, and
L. Rodero-Merino. Studying the evolution of libre
software projects using publicly available data. In
Proceedings of the 3rd Workshop on Open Source
Software Engineering, pages 111–115, Portland,
Oregon, 2003.

[12] G. Robles, S. Koch, and J. M. Gonzalez-Barahona.
Remote analysis and measurement of libre software
systems by means of the cvsanaly tool. In Proceedings
of the 2nd ICSE Workshop on Remote Analysis and
Measurement of Software Systems (RAMSS),
Edinburg, Scotland, UK, 2004.

APPENDIX
A. ADDITIONAL FIGURES

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

Figure 6: Correlation between the number of bugs
(x axis) and the number of commits (y axis)

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 2000 3000 4000 5000 6000 7000 8000 9000 10000

Figure 7: Correlation between the number of mes-
sages (x axis) and the number of commits(y axis)

 120

 140

 160

 180

 200

 220

 240

 260

 0 200 400 600 800 1000 1200 1400 1600 1800

Figure 8: Correlation between the number of re-
porters (x axis) and the number of commiters (y
axis)

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 120 140 160 180 200 220 240 260

Figure 9: Correlation between the number of com-
miters (x axis) and the number of posters (y axis)

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0 200 400 600 800 1000 1200 1400 1600 1800

Figure 10: Correlation between the number of re-
porters (x axis) and the number of bugs (y axis)

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 120 140 160 180 200 220 240 260

Figure 11: Correlation between the number of com-
miters (x axis) and the number of commits (y axis)

 1

 10

 10 100

Figure 12: Number of bugs versus time (as month
index from the beginning of the project), in log
scale.

 1

 10

 100

 1000

 10000

 10 100

Figure 13: Number of reporters versus time (as
month index from the beginning of the project), in
log scale.

 10000

 100000

 10 100

Figure 14: Number of commits versus time (as
month index from the beginning of the project), in
log scale.

 100

 1000

 10 100

Figure 15: Number of commiters versus time (as
month index from the beginning of the project), in
log scale.

