
An Empirical Approach to Software Archaeology∗

Gregorio Robles, Jesus M. Gonzalez-Barahona, Israel Herraiz
GSyC, Universidad Rey Juan Carlos (Madrid, Spain)

{grex,jgb,herraiz}@gsyc.escet.urjc.es

Abstract

The term “software archaeology” provides a useful
metaphor of the tasks that a software developer has to
face when performing maintenance on large software
projects. The source code of a program at any point in
time is the result of many different changes performed in
the past, usually by several people, which can be tracked
when a version control system is used. We have designed
a methodology for analyzing with detail the age of the
source code in such cases, and have applied it to several
large software projects. As a part of the methodology,
we define a set of indexes which can help to character-
ize the history of a software system, and discuss how
those could be used to estimate its past and future main-
tenance. We also show how our approach to software
archaeology is simple both conceptually and computa-
tionally, but still very powerful at uncovering useful in-
formation.

Keywords: software archaeology, software main-
tenance, software evolution, empirical analysis

1. Introduction

The idea of applying the concept of archaeology1 [1]
to software maintenance can be tracked at least to
the OOPSLA 2001 Workshop on Software Archeology.
Software archaeology has been generally used for large
old (legacy) systems, but it is valid for any type of soft-
ware with independence of its age and size. While main-
taining a given piece of software, developers have to
understand source code that has usually changed many
times in the past, producing a result which is the addition

∗This work has been funded in part by the European Commission,
under the CALIBRE CA, IST program, contract number 004337, by
the Universidad Rey Juan Carlos under project PPR-2004-42 and by
the Spanish CICyT under project TIN2004-07296.

1In American English ‘archeology’. The term comes from the
Greek meaning ‘arqaio
’ (ancient) and ‘lógo
’ (word/speech).

of all those changes. If the code is stored in a version
control system, its complete history is available, and can
be analyzed with appropriate tools. In this short paper,
we will focus on the analysis of such a history from a
macro point of view, gaining knowledge of the histori-
cal structure of a system as a whole, the same way that
archaeologists gain knowledge of the history of an an-
cient city by studying what remains from the different
constructions built in it.

For studying projects from this macro-archaeology
point of view, we have designed a methodology, which
is presented in this paper, and a set of tools to automate
it. The methodology starts by determining, using infor-
mation from the version control system, when and who
modified for the last time each line of code. Then, the
information for all lines is considered to calculate sev-
eral indexes which provide useful information about the
age of the code, the activity of developers in the past, the
level of changes (maintenance), etc. Using this informa-
tion we may also be able to estimate how much effort
new changes would imply.

As case examples of the use of the proposed method-
ology we have selected nine libre (free, open source)
software projects, most of which are among the hundred
largest libre software applications included in the latest
stable Debian GNU/Linux release2.

The structure of this paper is as follows. The next sec-
tion shows the methodology we propose for data extrac-
tion and analysis. After that, in section three, we apply
our methodology and discuss the results obtained. The
forth section introduces a set of indexes that we propose
and briefly discuss. Finally, conclusions and further re-
search goals are presented.

2Debian GNU/Linux is one of the most representative distri-
butions, and probably the largest one. See details inhttp://
libresoft.urjc.es/debian-counting/sarge



2. Methodology

To define the methodology, we have considered soft-
ware projects which store source code in a version con-
trol system (in particular, CVS, although it could be eas-
ily extended to some other). CVS keeps record of every
change in the code. It features a specific option (‘anno-
tate’) which shows, for any line, the date and author of
the last modification.

The process starts by obtaining, for every source file
in the current snapshot of the software, the correspond-
ing annotated files. They are stored and parsed. Source
files are identified by applying certain heuristics on the
file names (for instance, those ending in .c are supposed
to be C source files). For considering just code, blank
lines and comments are removed also using some other
heuristics. In addition, we run some error-correction
routines which check for common errors found when
mining data from CVS; in order to verify our heuris-
tics, we have compared the number of SLOCs obtained
with SLOCCount3 with the number of lines obtained af-
ter applying our heuristics.

Once the annotated files have been parsed, and the
mentioned heuristics applied, the resulting data is nor-
malized and inserted into a database, which will be later
queried for getting statistical information. This process
is performed by a set of scripts which are also responsi-
ble for the generation of the kind of graphs shown in this
short paper.

3. Case studies

We have applied the described methodology to the
code produced by nine libre software projects. They
show a great variety from many points of view (age, size,
complexity, number of developers, etc.), but all of them
are included in major GNU/Linux distributions, which is
an evidence of their popularity. In total, our case studies
sum up to 9.5 millions lines of code, written mainly in C
and C++, and 52,975 source code files. Table 1 presents
the most important facts about the code considered.

3.1. Remaining lines

Figure 1 shows how many lines remain untouched
since any past date for all the projects relative to the size
of each project. The horizontal axis is time, while the

3We use the ‘–duplicates’ option which counts duplicated files
twice as our tools, contrary to SLOCCount, do not filter them
out. SLOCCount is available athttp://www.dwheeler.com/
sloccount

Figure 1. Remaining lines (relative values)

vertical axis is measured in percentages (being 100% the
current size of the project). In the figure we can see what
which fraction of code is newer than a date. For exam-
ple, for the case of Apache, approximately 60is posterior
to December 1998.

Interestingly enough, the code in all projects is
young. Besides Apache 1.3, at least half of the code
in all of them is younger than 5 years. Even the code
base for Emacs, which we had selected as a legacy sys-
tem, has a large fraction (up to 70%) which is less than
7 years old.

Apache 1.3 has to be considered separately, since de-
velopers are now focused on Apache 2.0, where the main
development effort is taking place. However, we ex-
pected that at least some corrective maintenance effort
would be happening in 1.3, but at least since 2003 that
does not seem to be the case.

In the other end of the spectrum, with most of the
code being really new, we find GCC, Evolution, GIMP
and Wine. in all these cases, this is due, probably, to
recent refactorings of the code, including structural and
organizational changes.

4. Indexes

To get useful information from software archaeology,
it is convenient to use some parameters that help to char-
acterize the history of the project from this point of view.
This is the reason why we have defined some indexes
that may help to infer some properties of the correspond-
ing development and maintenance process.

2



Project Start Vers. 1.0 Oldest line SLOCs SLOCCount Percent. Files Authors
Emacs (1976) 1985 May 85 974,407 991,552 98.3% 1,522 136
GCC 1985 1987 Sep 97 2,191,764 2,262,632 96.9% 22,349 218
Wine 1993 - Oct 98 1,033,318 984,710 104.9% 2,201 2
GTK+ 1994 Apr 98 (Dec 97) 387,413 389,723 99.4% 839 114

The GIMP 1994 Jun 98 (Dec 97) 548,410 552,473 99.3% 2,244 71
Apache 1.3 1995 Jun 98 Feb 96 82,909 85,758 96.7% 269 51

kdelibs 1997 Jul 98 May 97 605,528 613,742 98.6% 3,131 363
Evolution 1998 Dec 01 May 98 205,278 207,069 99.1% 816 79
Mozilla (1998) Jun 02 (Apr 98) 3,414,387 3,510,691 97.3% 19,604 567

Table 1. Summary of the case studies. Columns contain the pro ject name, the year the project
started its development, the date of its release 1.0, the num ber of SLOCs according to our
methodology, the number of SLOCs according to SLOCCount, th e coincidence for both figures,
the number of files, and the authors identified in the current v ersion.

4.1. Definition of the indexes

• Aging (measured in SLOC-month). It is a direct
measure of how much the software is aging.

Aging =

N−1∑

n=1

linesn (1)

where n is the month number, being n=1 the first
month of the project and N the current one. Notice
that the last month is not taken into account.

This index is defined after Parnas’ well-known soft-
ware aging [2] concept, although we only have in mind
one of the factors. If we would stick to Parnas’ origi-
nal definition of aging, then we should take into account
changes performed on the system, and not only that the
software gets old as humans do.

• Relative aging. This index makes it possible to
compare theaging for several projects. It is mea-
sured in months and can be obtained from follow-
ing equation:

RelativeAging =
Aging

linesN

(2)

where N is the last month considered.

Relative aging represents the amount of time neces-
sary to have the same aging, had the project started with
the current number of lines. Of course, it can also be un-
derstood as the number of months needed to double the
currentaging of the project if the system is not touched
anymore.

• Relative 5-year Aging: relative size to itself as if
the project were 5 years old.

Rel5yA =
Aging

60 · linesN

(3)

where N is the last considered month

Relative 5-year aging allows for easier comparison,
defining 5 years as the moment for a system to become
‘old’. It is also a needed step for defining theabsolute
5-year agingindex (which will be presented later).

• Progeria4. As relative agingmeasures the amount
of time needed to double theagingvalue, we can
compare it to the amount of time needed to double
the code base.

Progeria =
RelativeAging

50%ofCurrentCode
(4)

Values of progeria lower than 1 are indicative of ac-
tive maintenance. Projects featuring those indexes have
not to fear the consequences of high values ofaging.
However, values above 1 imply thataging is growing
faster than software maintenance activity and therefore
are prone to showing more and more problems.

A new index that provides a value relative to a fixed-
size and a fixed-time software system will enable com-
parison among projects.

• Absolute 5-year aging: relative size as if the
project had 100 KSLOC and had been started 5

4Progeria is a genetic condition which causes physical changes that
resemble greatly accelerated aging in sufferers. Source: WikiPedia

3



Project Size Age Aging Rel. Aging Rel5yA Progeria Abs5yA
Emacs 974,043 239 62,419,261 64.1 1.07 0.93 10.40
GCC 2,188,033 91 65,558,122 30.0 0.50 0.65 10.93
Wine 1,028,820 78 26,926,319 26.2 0.44 0.80 4.49
GTK+ 387,333 88 16,938,898 43.7 0.73 1.04 2.82

The GIMP 540,540 98 16,002,332 29.6 0.49 0.59 2.67
Apache 1.3 82,909 110 6,161,847 74.3 1.24 1.10 1.03

kdelibs 604,888 95 20,089,807 33.2 0.55 1.04 3.35
Evolution 204,951 99 4,796,800 23.4 0.39 0.66 0.79
Mozilla 3,786,735 84 161,394,929 42.6 0.71 1.00 26.90

Table 2. Archaeology indexes for our case studies. Size is gi ven in SLOC, Age in months, Aging
in SLOC-month, Relative Aging in months, Progeria, Rel5yA a nd Abs5yA are indexes.

years (60 months) ago. Serves for comparison pur-
poses among projects.

Abs5yA =
Aging

60 · 100K
(5)

where N is the last considered Month.

4.2. Application to the case studies

Table 2 shows how the aging index is not too useful
for comparison purposes (although it provides a good
idea of the absolute aging). However, relative aging al-
lows for those comparisons. We can see in the corre-
sponding column of the table a summary of the infor-
mation in figure 1. Apache and Emacs are the systems
with the highest relative aging. Evolution, Wine and The
GIMP have values in the 20s, which mean that they are
still in actively maintained.

With respect to progeria, it can be said that it shows
how Mozilla balances aging and evolution, while there
are four projects which are becoming old systems:
Apache and Emacs (which at this stage of the analysis is
not surprising at all), but also GTK+ and kdelibs.

The absolute 5-year aging depends on the size, and
has been presented as a proxy of maintainability. It
shows that Apache, even having high progeria and ag-
ing is still morefriendly to be maintained than the rest
of systems (except for Evolution) because of its small
size. Emacs and GCC, even having the latter two times
the size of the former, have similar values, while GTK+
and GIMP also show this behaviour.

5. Conclusions and further research

In this paper we have presented an empirical appli-
cation of the archaeology concept to the macro study of

projects maintained in version control systems, with spe-
cial focus on libre software projects. We have devised a
methodology for that study, from which we have defined
several indexes which can be used to summarize the de-
velopment process from the point of view of aging and
maintenance.

One of the key findings of this work has been to
show that the application of the methodology to the case
examples has provided some insight about the mainte-
nance efforts, and the maintainability of the correspond-
ing projects. From a more general point of view, the
characterization of a project by several indexes that con-
tribute with useful information about its age and main-
tainability is probably the key contribution of our work
and may help in the decision-taking process by the de-
velopment teams in libre software projects or by the
management team in industrial software companies.

There are many possible future lines of research to
explore this approach. First of all, we are looking for
better ways of visualization of the archaeological results
from a macroscopic point of view. We are also inter-
ested in finding relationships with the parameters used
in software evolution studies, and in correlating them
with effort estimation.

As a summary, we believe that software archaeology
provides an interesting framework for digging in the past
of a project, so that we can learn patterns and informa-
tion relevant to infer its future.

References

[1] A. Hunt and D. Thomas. Software Archaeology.IEEE
Software, 19(2):20–22, 2002.

[2] D. L. Parnas. Software aging. InProceedings of the In-
ternational Conference on Software Engineering, pages
279–287, Sorrento, Italy, May 1994.

4


