
Comparison between SLOCs and number of files as size metrics for software
evolution analysis

Israel Herraiz, Gregorio Robles, Jesús M. González-Barahona
Grupo de Sistemas y Comunicaciones
Universidad Rey Juan Carlos, SPAIN∗

{herraiz, grex, jgb}@gsyc.escet.urjc.es

Andrea Capiluppi
Dipartimento di Automatica e Informatica

Politecnico di Torino, ITALY
Andrea.Capiluppi@polito.it†

Juan F. Ramil
Computing Department

Faculty of Maths and Computing
The Open University, UK

J.F.Ramil@open.ac.uk

Abstract

There are some concerns in the research community
about the convenience of using low-level metrics (such
as SLOC, source lines of code) for characterizing the
evolution of software, instead of the more traditional
higher lever metrics (such as the number of modules
or files). This issue has been raised in particular after
some studies that suggest that libre (free, open source)
software evolves differently than ‘traditional’ software,
and therefore it does not conform to Lehman’s laws of
software evolution. Since those studies on libre software
evolution use SLOCs as the base metric, while Lehman’s
and other traditional studies use modules or files, it is
difficult to compare both cases. To overcome this diffi-
culty, and to explore the differences between SLOC and
files/modules counts in libre software projects, we have
selected a large sample of programs and have calculated
both size metrics over time. Our study shows that in
those cases the evolution patterns in both cases (count-
ing SLOCs or files) is the same, and that some patterns
not conforming to Lehman’s laws are indeed apparent.

Keywords: metrics, software evolution, libre soft-
ware, empirical studies

1. Introduction and aims

Thirty years of research on software evolution have
resulted in a set of empirical observations, known as

Lehman’s Laws of Software Evolution [6]. Although
the number of laws has grown from three (in the sev-
enties) to eight (in their latest version [5]), all of them
have been empirically proved, by studying projects de-
veloped in traditional industrial software development
environments.

In recent times, the rise of a new development phe-
nomenon, libre software1, has opened new horizons to
the analysis of software evolution, at least with respect to
two issues. The first one is whether the laws of software
evolution apply to these new environments, where man-
agement is loose and contributions from third parties,
mainly volunteers, are fostered. The second one derives
from the fact that this type of projects make available to
researchers a large quantity of public information about
the development process which can be retrieved and an-
alyzed. This offers the possibility of having a general
view of the landscape instead of just the results of a
small number of selected case studies.

Several authors have analyzed the evolution of libre

∗The work by the researchers at URJC has been funded in part by
the European Commission, under the CALIBRE CA, IST program,
contract number 004337, and by the Spanish CICyT under project
TIN2004-07296. Israel Herraiz has been funded in part by Conseje-
ria de Educación of Comunidad de Madrid and European Social Fund,
under grant number 01/FPI/0582/2005. Part of this work has been de-
veloped while Israel Herraiz was visiting The Open University.

†Visiting researcher at The Open University, UK
1. Through this paper we will use the term “libre software” to refer

code that conforms to either the definition of “free software” (accord-
ing to the Free Software Foundation) or of “open source software”
(according to the Open Source Initiative).

software, usually considering the Linux kernel as a case
study. They have found that the evolution of libre soft-
ware is different from the evolution of ’traditional’ soft-
ware reported so far. Godfrey and Tu [3, 2] showed that
Linux is growing superlinearly in size (using SLOCs as
metric). Succi et al. [13] confirmed the super-linearity
for the Linux kernel, but found linear growth for GCC
and Apache. Recently, Robles et al. [9] have repeated
the study on the Linux kernel obtaining again super-
linear growth (with a greater growth rate), and have also
extended the methodology to a wider sample (includ-
ing the FreeBSD, NetBSD and OpenBSD kernels, and a
sample of other 18 large, both in size and in number of
contributors, libre software projects), showing in most
cases linear or near-to-linear behaviors.

However, there is still a need of more studies, based
on wider samples of libre software projects and a larger
set of metrics, that could shed some light on the be-
havior of libre software according to the classical as-
sumptions in software evolution [6]. In addition, most
of the studies on libre software evolution have consid-
ered SLOC (source lines of code) or LOC as the metric
to study, which causes some difficulties in the compari-
son with the classical works, based on modules or files
counts. Therefore, it is also important to state whether
both kinds of metrics are comparable with respect to
software evolution.

This paper is a first step in this direction. We show
that the evolution patterns using SLOC and files counts
are quite similar. In addition, we have also found how
most of the projects that have been selected show a be-
havior similar to previous studies on libre software evo-
lution, although some projects in the sample do not. A
more particular result is the validation of the conclusions
of [3, 2] and [9] about Linux with a different size metric
(number of files).

The structure of the rest of this paper is as follows. In
the next section the research methodology is explained,
including the reasons for choosing the sample of projects
to study. In section 3 the main results of applying it to
the sample of projects are shown. Section 4 refers some
previous work related to this study. Finally, in section 5
we provide some more insight into the results in the form
of conclusions.

2. Methodology

The methodology we have followed in the present
work can be summarized as follows. To begin with, a
sample of libre software projects is selected. For each
project in the sample, a snapshot of its code (as stored

in the SCM repository of the project) at periodic points
in time is downloaded and measured. The data obtained
is stored in a database which is later queried to build
the datasets needed for obtaining the evolution patterns
(considering both SLOC and files). These evolution pat-
terns are lated analyzed with detail, to obtain the con-
clusions of our study. In the rest of this section, some
details of the most important aspects of this methodol-
ogy are provided.

2.1. Selection of the sample

A key issue for this study was the selection of the
sample of libre software projects to analyze. After con-
sidering several chances, we decided that it made sense
to focus on some of the largest packages in Debian
GNU/Linux.

Debian is one of the largest (and maybe the largest)
software systems in the world. Its size is over 229
millions of lines of code, and as some studies have
shown [1, 11] it is a healthy system with good reputa-
tion of stability and matureness. Debian 3.1, the latest
release, contains 8633 packages of source code2 which
are maintained by 1380 developers. These packages are
not developed by Debian developers themselves: their
work is basically packaging and integrating the upstream
software into a coherent GNU/Linux distribution.

Most libre software is developed for Unix systems
(in particular, for GNU/Linux), and Debian contains the
most demanded and used applications by users, so it is
very strange that a well known and used libre software
project is not found of Debian (with some exceptions,
the most remarkable being some Java-based projects,
not included in Debian because of dependencies issues).
In other words, libre software which is not part of De-
bian is the exception, not the rule. Therefore, we have
selected the population of software packages of Debian
as a representation of the whole population of libre soft-
ware projects. From this population, we have selected a
sample, which satisfies some criteria.

After choosing the base distribution, we selected a
sample from it. For that matter, we applied several cri-
teria. The first one is clear: the selected projects must
have enough history to make the study. After some dis-
cussions, we agreed to select only projects older than 30
months. Otherwise, the amount of data we could retrieve
is not enough to make meaningful correlations between
the different metrics.

2. Source packages, which only include source code. The popula-
tion of binary packages in Debian contains 15300 packages.

2

The next criteria is based on the version control sys-
tem used by the project. For the study, the GlueTheos
tool [10] has been used, which is able to download pe-
riodical snapshots of source code from a CVS server.
Therefore, we limited the sample to projects with a CVS
server. Fortunately, CVS is the most popular control ver-
sion system in libre software projects, and therefore this
limitation doesn’t imply a significant bias in the sample.

We were also interested in large projects, since they
are developed by large groups of developers, thus avoid-
ing the effect of special cases in very small groups of
developers. Starting with data obtained for [1], we de-
cided to consider the largest ones.

A result of this selection process, we selected 10
packages, which are, among those largest in Debian,
those with a CVS repository and at least 30 months old
(the only exception being the Linux kernel, which was
included because of its significance in previous stud-
ies). In addition, the FreeBSD, NetBSD and OpenBSD
kernels were also added to the sample, because these
projects are well known large libre software projects and
comply with the selection criteria (except for not being
part of Debian). The details of the selected projects are
shown in table 1. In the first column is shown the name
of the project; the CVS modules analyzed is in the sec-
ond column; the number of SLOCs at the end of the con-
sidered period is in the third column; the number of files
at the end of the analyzed period in the fourth; the date
of the first analyzed snapshot in the fifth; and the date of
the last snapshot in the sixth.

In some cases the date of beginning of the study is not
the same than the date of the beginning of the project,
because we used only the first date with some data in
the CVS. With this procedure we had enough data to
perform the intended analysis.

2.2. Data extraction and analysis

Once the sample of packages was selected, and their
CVS repositories was identified, we had to obtain the
needed data for each project, and perform the corre-
sponding measurements. For this purpose, we used the
already mentioned GlueTheos tool, whose architecture
is shown in figure 1.

For each project, the date of the first commit in
the CVS was identified, in some cases by using the
history command available in the CVS client tool,
in some others by reviewing directly the CVS web in-
terface of the project. Since the date of the first commit,
and with a period of six months, a snapshot of the source
code was downloaded.

Figure 1. Architecture of the GlueTheos
tool

After downloading each snapshot, the number of
SLOCs and the number of files of source code was mea-
sured, using the SlocCount tool [12]. The output of this
tool was parsed and stored in a database, that afterwards
we queried in order to obtain the number of SLOCs and
files over time.

In the case of Linux, since the project does not have
a CVS server, the methodology was partially different.
The sources of each release were obtained as a tar.gz
compressed files. They were decompressed and ex-
tracted, at the same time that the date of each release
was identified. Then, we measured SLOCs and number
of files for each release, and obtained the results in the
same format than the cases that have a CVS server.

As a result of this procedure, we completed a
database with the number of SLOCs and the number of
files for each snapshot of each project (taken periodi-
cally every six months), except for the case of Linux,
where each snapshot corresponds with a release.

The data in the database was analyzed and correlated,
leading to the results shown in the next section.

3. Results

For each project, the size measured in SLOCs and the
size measured in number of files of source code for each
snapshot was correlated. The results are shown in table
2. The name of the project is shown in the first column,
the linear equation fitting the number of SLOCs and the
number of files is shown in the second column, the num-
ber of snapshots considered in the regression analysis is
in the third column, and the Pearson correlation coeffi-
cient in the fourth. It can be seen how all the projects
have at least 11 points to make the correlation analysis.

The worst correlation coefficient obtained for those
projects is r2 = 0.8893, and the best one is r2 = 0.9977.
Therefore we can conclude that, at least in the case of

3

Name Modules SLOCs Num. of files First date Last Date
Amaya Amaya 443295 1092 1997-06-30 2005-05-19

Evolution evolution 359148 1489 1997-12-27 2005-05-19
FreeBSD src 1756198 5652 1993-06-19 2005-05-17

Kaffe kaffe 598387 5294 1998-04-30 2005-05-23
NetBSD src 2535613 13175 1992-07-19 2005-06-11

OpenBSD src 1606210 6254 1997-10-26 2005-06-16
Prc-Tools prc-tools 19176 152 2000-05-19 2005-05-25

Python python 615113 2261 1997-06-30 2005-05-19
Wine wine 927415 2098 1998-12-27 2005-05-24

wxWidgets wxwidgets 1781581 4175 2002-11-04 2005-05-23
XEmacs XEmacs 2210705 5266 1997-12-27 2005-05-19
XFree86 xc 2200501 6756 1997-06-30 2005-05-19

Linux – 4176875 16583 1991-09-17 2004-12-24

Table 1. Details of the selected projects

the selected projects, using SLOCs or number of files as
size metrics throws the same results, and therefore, for
software evolution analysis, the same conclusions can be
derived by measuring SLOCs or number of files.

As an example, we show in figure 2 the correlation
between the number of SLOCs and the number of files
in the case of the Linux kernel, and in figure 3 for the
FreeBSD src module. It can be seen how the correla-
tion is clearly linear. The rest of the projects follow the
same pattern, as the correlation coefficients evidences.

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 3.5e+06

 4e+06

 4.5e+06

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000

SLOCs vs. files

Figure 2. Scatter plot between the number
of SLOCs (vertical axis) and the number of
files of source code (horizontal axis) in the
case of the Linux kernel.

The growth rate for each project was also calculated,
with SLOCs and number of files as size metric. For ex-
ample, in figures 4 and 5, the linear growth over time for
FreeBSD src module is shown, with SLOCs and num-

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 1.4e+06

 1.6e+06

 1.8e+06

 0 1000 2000 3000 4000 5000 6000

SLOCs vs. files

Figure 3. Scatter plot between the number
of SLOCs (vertical axis) and the number of
files of source code (horizontal axis) in the
case of the FreeBSD src module.

4

Project Equation n r2

Amaya S = 563.635 · f − 153662.2706 14 .8893
Evolution S = 237.8748 · f − 1397.7322 11 .9945
FreeBSD S = 312.2457 · f + 108.9p28 46 .9975

Kaffe S = 105.7720 · f − 5316.4131 35 .9842
NetBSD S = 189.8916 · f + 101416.3262 43 .9889

OpenBSD S = 219.8261 · f + 230075.6100 12 .9797
Prc tools S = 101.2863 · f + 2347.8471 122 .9709
Python S = 335.8650 · f − 189998.4555 13 .9552
Wine S = 514.9345 · f − 142849.9740 11 .9927

wxWidgets S = 465.9170 · f − 233395.2761 29 .8950
XEmacs S = 424.4406 · f − 26183.4515 15 .9956
XFree86 S = 326.6894 · f − 70754.4803 12 .9861

Linux S = 265.3134 · f − 26979.9934 533 .9977

Table 2. Correlation between SLOCs and number of files in the selected projects (S is number
of SLOCs and f is number of files of source code).

ber of files as size metrics, respectively. We correlated
the number of SLOCs and number of files versus time,
with a quadratic equation. We took the coefficient of
the quadratic term as a measurement of the growth rate.
We are interested only in the sign (positive, negative or
zero) of the rate, and not in its exact value (although we
have calculated the value of the growth rate, using both
SLOCs and number of files as size metrics).

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 1.4e+06

 1.6e+06

 1.8e+06

 0 20 40 60 80 100 120 140 160

SLOCs

Figure 4. Growth of FreeBSD src module
(SLOCs, vertical axis) over time.

With these data, the projects were classified in three
categories: those whose rate is positive (superlinear
growth), those whose rate is nearly zero (linear growth)
and those whose rate is negative (sublinear growth). All
the projects came under the same category, indepen-
dently of the selected metric. The results are shown in

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 20 40 60 80 100 120 140 160

Files

Figure 5. Growth of FreeBSD src module
(number of files, vertical axis) over time.

5

table 3. For classifying each project in each category,
we took also a look to the evolution graphics, in order to
check if the pattern (linear, sublinear, superlinear) was
correct (for example, see figures 4 and 5).

Focusing in the case of Linux, we can conclude that
the studies by Godfrey [3] and Robles [9] are also ver-
ified using number of files of source code instead of
SLOCs, as it is shown in figure 6. In the vertical axis,
number of files of source code are shown; in the hori-
zontal axis, time. Each curve represents a version of the
Linux kernel.

The quadratic correlation throws a Pearson coeffi-
cient of r2 = 0.9325 when using release number as time
unit. If we use instead days since the first release, the
coefficient is r2 = 0.9066. In this last case, the equation
is S = 0.7918 · 10−4 · t2 − 0.4002 · t+143.1589, where
S is the number of files of source code, and t is the time
in days.

As it is shown in table 3, only three of the projects
in the sample grow with a sublinear pattern. In other
words, only these three projects grow with a pattern sim-
ilar to that described in [6]. Therefore, we can also con-
clude that most of the analyzed projects do not conform
to the predictions of the Lehman’s fourth law.

4. Related work

To our knowledge the first reference showing new
growth patterns in the case of libre software is [3].
Godfrey showed that the growth of Linux followed a
quadratic law, which is clearly different from the clas-
sical assumptions about the evolution of software sys-
tems, formulated by Lehman [6], which postulated sub-
linear growth. Lehman himself (et al.) noticed this case,
and labeled up it as an anomaly [8], proposing as pos-
sible causes that an open pool of developers could be
contributing code to Linux, and furthermore that a high
level of code cloning could be present in the code.

Robles et al. [9] repeated and updated the study of
Godfrey about the Linux kernel, and found that the
growth rate has even increased in the last five years.
Therefore, the growth would be not only superlinear, but
even more superlinear as time passes.

Other software evolution studies [4] have found the
same superlinear pattern, considering libre software
projects in SourceForge. Despite measuring number of
files as well as SLOCS, the conclusions about the growth
patterns in those studies were based only in SLOCs
or LOCs measurements. However, in previous studies,
Lehman et al. had defended that SLOCs is not the best
metric for software evolution analysis[7], using instead

modules or files in his research, in which was followed
by most authors.

With respect to the distribution used as a base for the
sample of projects selected for this study, it can be said
that Debian is a well known GNU/Linux distribution. It
has been used as a case study since some years ago. As
an example, the most recent reference studying Debian
is [1]. These studies have focused in analyzing Debian
from a high level point of view, making aggregated anal-
ysis of the whole distribution, rather than focusing on
each package, and analyzing it in a deeper way.

5. Conclusions

Libre software is being studied with increasing inter-
est since some years ago. Some of the early research in
this field already showed that the evolution patterns in li-
bre software programs are different to those found in the
classical studies. Specifically, non-sublinear growth pat-
terns were reported. Later research seemed to confirm
those findings, but still with some difficulties in the com-
parison of results. In particular, all these studies about
libre software were based on SLOCs or LOCs as size
metric, while traditional studies considered modules or
files.

In this work, we have revalidated the finding about
the non-sublinear growth pattern with some more exam-
ples. Moreover, we have shown that these results are the
same with two different size metrics (SLOCs and num-
ber of files). At least in the case of the selected sample
of projects, we can conclude that the number of SLOCs
is a metric as good as the number of files for software
evolution analysis.

However, we can still not explain at this moment why
libre software projects are growing with non-decreasing
rates. Deeper analysis are needed, measuring more fea-
tures of the software (such as complexity), and look-
ing for hot points of evolution by means of architec-
tural analysis over time. It is very interesting to try to
solve how these projects are controlling the complexity
(if they are). The control of the complexity seems to
allow them to grow in size in a fast way, and with an
increasing rate. It would be also interesting to try to find
dead parts which are no longer evolving, and if there are
cloned parts in the architecture.

Moreover, effort measurements are crucial to find out
if it is true that an open pool of developers is contributing
to the evolution of libre software, and how large these
contributions are.

In any case, it seems clear that there must be lim-
its for these parameters. Size can not grow forever, as

6

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

Dec-2004Aug-2002Nov-1999Feb-1998Sep-1996Oct-1995Sep-1991

To
ta

l F
ile

s

1.0
1.1
1.2
1.3
2.0
2.1
2.2
2.3
2.4
2.5
2.6

Figure 6. Evolution of the size of Linux kernel (vertical axis, as number of files of source code)
over time.

Project Growth rate (SLOCs) Growth rate (# files) Category
Amaya 1.45 -0.0055 Linear

Evolution -31.89 -0.17 Sublinear
FreeBSD* 15.16 0.056 Linear

Kaffe 77.13 0.71 Superlinear
NetBSD* 152.74 1.04 Superlinear

OpenBSD* 401.20 2.01 Superlinear
Prc tools 4.31 0.044 Superlinear
Python 18.43 -0.062 Linear
Wine 50.06 0.064 Linear

wxWidgets* 587.56 0.29 Superlinear
XEmacs -259.44 -0.60 Sublinear
XFree86 -412.28 -1.47 Sublinear
Linux* 186.21 0.71 Superlinear

Table 3. Growth pattern for each project. Growth rates in size per each six months (projects
with * show rates per month rather than per six months)

7

complexity makes more difficult to add functionality to
a project, and causes it to slow down. Developers can
not improve their productivity forever, as an increasing
number of developers working in the same artifact pro-
vokes inefficiencies.

Therefore, more studies are needed to enlighten some
of this doubts, and to better understand the fast growth
of libre software. With time, even the formulation of a
theoretical framework to explain this behavior should be
possible.

References

[1] J. J. Amor-Iglesias, J. M. González-Barahona, G. Rob-
les, and I. Herraiz. Measuring libre software using de-
bian 3.1 (sarge) as a case study: Preliminary results. Up-
grade, VI(3), June 2005.

[2] M. Godfrey and Q. Tu. Growth, evolution, and structural
change in open source software. In Internation Work-
shop on Principles of Software Evolution, Vienna, Aus-
tria, September 2001.

[3] M. W. Godfrey and Q. Tu. Evolution in Open Source
software: A case study. In Proceedings of the Interna-
tional Conference on Software Maintenance, pages 131–
142, San Jose, California, 2000.

[4] S. Koch. Evolution of open source system software sys-
tems - a large scale investigation. In Proceedings of the
First International Conference on Open Source Systems,
2005.

[5] M. Lehman, J. Ramil, P. Wernick, and D. Perry. Metrics
and laws of software evolution - the nineties view. In
Proceedings of the Fourth International Software Met-
rics Symposium, 1997.

[6] M. M. Lehman and L. A. Belady, editors. Program evo-
lution: processes of software change. Academic Press
Professional Inc., 1985.

[7] M. M. Lehman, D. E. Perry, and J. F. Ramil. Implica-
tions of evolution metrics on software maintenance. In
ICSM, pages 208–218, 1998.

[8] M. M. Lehman, J. F. Ramil, and U. Sandler. An ap-
proach to modelling long-term growth trends in soft-
ware systems. In Software Maintenance, 2001. Proceed-
ings. IEEE International Conference on, pages 219–228,
2001.

[9] G. Robles, J. J. Amor, J. M. Gonzalez-Barahona, and
I. Herraiz. Evolution and growth in large libre software
projects. In Proceedings of the 8th International Work-
shop on Principles of Software Evolution, pages 165–
174, Lisbon, September 2005. IEEE Computer Society.

[10] G. Robles, J. M. Gonzalez-Barahona, and R. A. Ghosh.
Gluetheos: Automating the retrieval and analysis of data
from publicly available software repositories. In Pro-
ceedings of the International Workshop on Mining Soft-
ware Repositories, pages 28–31, Edinburg, Scotland,
UK, 2004.

[11] G. Robles, J. M. Gonzalez-Barahona, and
M. Michlmayr. Evolution of volunteer participa-
tion in libre software projects: evidence from Debian.
In Proceedings of the 1st International Conference on
Open Source Systems, Genova, Italy, July 2005. To
appear.

[12] Sloccount.
http://www.dwheeler.com/sloccount/.

[13] G. Succi, J. Paulson, and A. Eberlein. Preliminary re-
sults from an empirical study on the growth of open
source and commercial software products. In EDSER-3
Workshop, co-located with ICSE 2001, Toronto, Canada,
May 2001.

8

